ARG42778
anti-SMN / Gemin1 antibody
anti-SMN / Gemin1 antibody for IHC-Formalin-fixed paraffin-embedded sections,Immunoprecipitation,Western blot and Human,Mouse,Rat
Overview
Product Description | Rabbit Polyclonal antibody recognizes SMN / Gemin1 |
---|---|
Tested Reactivity | Hu, Ms, Rat |
Tested Application | IHC-P, IP, WB |
Host | Rabbit |
Clonality | Polyclonal |
Isotype | IgG |
Target Name | SMN / Gemin1 |
Antigen Species | Human |
Immunogen | Synthetic peptide derived from Human SMN / Gemin1. |
Conjugation | Un-conjugated |
Alternate Names | SMA3; SMA2; SMA1; Component of gems 1; SMNT; SMA4; GEMIN1; Survival motor neuron protein; BCD541; SMN; SMA@; T-BCD541; TDRD16A; SMA; Gemin-1 |
Application Instructions
Application Suggestion |
|
||||||||
---|---|---|---|---|---|---|---|---|---|
Application Note | * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. | ||||||||
Positive Control | HepG2 | ||||||||
Observed Size | ~ 36 kDa |
Properties
Form | Liquid |
---|---|
Purification | Affinity purified. |
Buffer | PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol. |
Preservative | 0.02% Sodium azide |
Stabilizer | 50% Glycerol |
Storage Instruction | For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. |
Note | For laboratory research only, not for drug, diagnostic or other use. |
Bioinformation
Database Links | |
---|---|
Gene Symbol | SMN1 |
Gene Full Name | survival of motor neuron 1, telomeric |
Background | This gene is part of a 500 kb inverted duplication on chromosome 5q13. This duplicated region contains at least four genes and repetitive elements which make it prone to rearrangements and deletions. The repetitiveness and complexity of the sequence have also caused difficulty in determining the organization of this genomic region. The telomeric and centromeric copies of this gene are nearly identical and encode the same protein. However, mutations in this gene, the telomeric copy, are associated with spinal muscular atrophy; mutations in the centromeric copy do not lead to disease. The centromeric copy may be a modifier of disease caused by mutation in the telomeric copy. The critical sequence difference between the two genes is a single nucleotide in exon 7, which is thought to be an exon splice enhancer. Note that the nine exons of both the telomeric and centromeric copies are designated historically as exon 1, 2a, 2b, and 3-8. It is thought that gene conversion events may involve the two genes, leading to varying copy numbers of each gene. The protein encoded by this gene localizes to both the cytoplasm and the nucleus. Within the nucleus, the protein localizes to subnuclear bodies called gems which are found near coiled bodies containing high concentrations of small ribonucleoproteins (snRNPs). This protein forms heteromeric complexes with proteins such as SIP1 and GEMIN4, and also interacts with several proteins known to be involved in the biogenesis of snRNPs, such as hnRNP U protein and the small nucleolar RNA binding protein. Multiple transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2014] |
Function | The SMN complex plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. Thereby, plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP. In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. Dissociation by the SMN complex of CLNS1A from the trapped Sm proteins and their transfer to an SMN-Sm complex triggers the assembly of core snRNPs and their transport to the nucleus. Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development. Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). [UniProt] |
Cellular Localization | Nucleus, gem. Nucleus, Cajal body. Cytoplasm. Cytoplasmic granule. Perikaryon. Cell projection. Cytoplasm, myofibril, sarcomere, Z line. Note=Colocalizes with actin and at the Z-line of skeletal muscle. Under stress conditions colocalizes with RPP20/POP7 in punctuated cytoplasmic granules. Colocalized and redistributed with ZPR1 from the cytoplasm to nuclear gems and Cajal bodies. Colocalizes with FMR1 in cytoplasmic granules in the soma and neurite cell processes. [UniProt] |
Calculated MW | 32 kDa |
Images (1) Click the Picture to Zoom In