ARG23492

anti-Angiotensin antibody [08/56a/A2.21 (BGN/0856/21)]

anti-Angiotensin antibody [08/56a/A2.21 (BGN/0856/21)] for ELISA and Human

Overview

Product Description Mouse Monoclonal antibody [08/56a/A2.21 (BGN/0856/21)] recognizes Angiotensin.
This antibody recognizes Angiotensin I, Angiotensin II and Angiotensin III in ELISA.
Tested Reactivity Hu
Tested Application ELISA
Host Mouse
Clonality Monoclonal
Clone 08/56a/A2.21 (BGN/0856/21)
Isotype IgG1
Target Name Angiotensin
Antigen Species Human
Immunogen Synthetic peptide representing Angiotensin II, conjugated to rabbit albumin.
Conjugation Un-conjugated
Alternate Names Des-Asp[1]-angiotensin II; Angiotensin III; SERPINA8; Angiotensinogen; Angiotensin 3-8; Ang IV; Ang I; Angiotensin I; Angiotensin II; Angiotensin 1-8; Angiotensin 1-10; Angiotensin IV; Ang III; Ang II; Angiotensin 2-8; ANHU; Serpin A8

Application Instructions

Application Suggestion
Tested Application Dilution
ELISA1:10 - 1:100
Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist.

Properties

Form Liquid
Purification Purification with Protein A.
Buffer PBS and 0.09% Sodium azide.
Preservative 0.09% Sodium azide
Concentration 1 mg/ml
Storage Instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use.
Note For laboratory research only, not for drug, diagnostic or other use.

Bioinformation

Database Links

GeneID: 183 Human AGT

Swiss-port # P01019 Human Angiotensinogen

Gene Symbol AGT
Gene Full Name angiotensinogen (serpin peptidase inhibitor, clade A, member 8)
Background The protein encoded by this gene, pre-angiotensinogen or angiotensinogen precursor, is expressed in the liver and is cleaved by the enzyme renin in response to lowered blood pressure. The resulting product, angiotensin I, is then cleaved by angiotensin converting enzyme (ACE) to generate the physiologically active enzyme angiotensin II. The protein is involved in maintaining blood pressure and in the pathogenesis of essential hypertension and preeclampsia. Mutations in this gene are associated with susceptibility to essential hypertension, and can cause renal tubular dysgenesis, a severe disorder of renal tubular development. Defects in this gene have also been associated with non-familial structural atrial fibrillation, and inflammatory bowel disease. [provided by RefSeq, Jul 2008]
Function Essential component of the renin-angiotensin system (RAS), a potent regulator of blood pressure, body fluid and electrolyte homeostasis.

Angiotensin-2: acts directly on vascular smooth muscle as a potent vasoconstrictor, affects cardiac contractility and heart rate through its action on the sympathetic nervous system, and alters renal sodium and water absorption through its ability to stimulate the zona glomerulosa cells of the adrenal cortex to synthesize and secrete aldosterone.

Angiotensin-3: stimulates aldosterone release.

Angiotensin 1-7: is a ligand for the G-protein coupled receptor MAS1. Has vasodilator and antidiuretic effects. Has an antithrombotic effect that involves MAS1-mediated release of nitric oxide from platelets. [UniProt]
Calculated MW 53 kDa
PTM Beta-decarboxylation of Asp-34 in angiotensin-2, by mononuclear leukocytes produces alanine. The resulting peptide form, angiotensin-A, has the same affinity for the AT1 receptor as angiotensin-2, but a higher affinity for the AT2 receptor.

In response to low blood pressure, the enzyme renin/REN cleaves angiotensinogen to produce angiotensin-1. Angiotensin-1 is a substrate of ACE (angiotensin converting enzyme) that removes a dipeptide to yield the physiologically active peptide angiotensin-2. Angiotensin-1 and angiotensin-2 can be further processed to generate angiotensin-3, angiotensin-4. Angiotensin 1-9 is cleaved from angiotensin-1 by ACE2 and can be further processed by ACE to produce angiotensin 1-7, angiotensin 1-5 and angiotensin 1-4. Angiotensin 1-7 has also been proposed to be cleaved from angiotensin-2 by ACE2 or from angiotensin-1 by MME (neprilysin).

The disulfide bond is labile. Angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized disulfide-bonded form, which preferentially interacts with receptor-bound renin. [UniProt]