

Mixed Function Oxidase Assay Kit

ARG83404 Mixed Function Oxidase Assay Kit can be used to measure Mixed Function Oxidase in tissue extracts, cell lysate and other biological fluids

Catalog number: ARG83404

Package: 96 wells

For research use only. Not for use in diagnostic procedures.

TABLE OF CONTENTS

SECTION	Page
INTRODUCTION	3
PRINCIPLE OF THE ASSAY	3
MATERIALS PROVIDED & STORAGE INFORMATION	3
MATERIALS REQUIRED BUT NOT PROVIDED	4
TECHNICAL HINTS AND PRECAUTIONS	4
SAMPLE COLLECTION & STORAGE INFORMATION	4
REAGENT PREPARATION	5
ASSAY PROCEDURE	5
CALCULATION OF RESULTS	7

MANUFACTURED BY:

Arigo Biolaboratories Corporation

Address: No. 22, Ln. 227, Gongyuan Rd., Hsinchu City 300, Taiwan

Phone: +886 (3) 562 1738

Fax: +886 (3) 561 3008

Email: info@arigobio.com

INTRODUCTION

Desaturation of fatty acyl-CoA in vertebrates is an example of the mixedfunction oxidase reaction. In the process, saturated fatty acyl-CoA and NADPH are oxidized by molecular oxygen (O2) to produce monounsaturated fatty acyl-CoA, NADP+ and 2 molecules of water.

PRINCIPLE OF THE ASSAY

Mixed Function Oxidase Assay Kit determined Mixed Function Oxidase based on the cleavage of 4-nitrophenol from the synthetic substrate. Nitrophenol becomes intensely colored after addition of the stop reagent. The increase in absorbance at 405 nm is directly proportional to the enzyme activity.

Component	Quantity	Storage	
Microplate	1 X 96-well plate	1 X 96-well plate	
Standard	1 vial (lyophilized)	4°C	
Assay Buffer	4 X 30 ml	4°C	
Substrate	1 vial (lyophilized)	-20°C	
Reaction Buffer	10 ml	4°C	
Coenzyme	1 vial (lyophilized)	-20°C	
Stop Solution	10 ml	4°C	

MATERIALS PROVIDED & STORAGE INFORMATION

MATERIALS REQUIRED BUT NOT PROVIDED

- Microplate reader capable of measuring absorbance at 405 nm
- Pipettes and pipette tips
- Deionized or distilled water

TECHNICAL HINTS AND PRECAUTIONS

- Wear protective gloves, clothing, eye, and face protection especially while handling blood or body fluid samples.
- Store Substrate and Coenzyme at -20°C, other component at 4°C.
- Briefly spin down the reagents before use.
- It is highly recommended that the standards and samples be assayed in at least duplicates.
- Change pipette tips between the addition of different reagent or samples.

SAMPLE COLLECTION & STORAGE INFORMATION

The sample collection and storage conditions listed below are intended as general guidelines. Sample stability has not been evaluated.

<u>For tissue-</u>Weigh out 0.1 g tissue, homogenize with 1 ml Assay buffer on ice, centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

For cell and bacteria- Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 ml Assay buffer for 5 × 106 cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s, repeat 30 times); centrifuged at 8000g 4 °C for 10 minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

Note: For other liquid sample, it can be assayed directly.

REAGENT PREPARATION

- Standard: Add 1 ml of Reaction Buffer to dissolve standard; then add 30 μl into 970 μl of Reaction Buffer, to yield 300 μmol/L standard. Perform 2-fold serial dilution of the top standards to make the standard curve.
- Substrate: Reconstitute the Substrate with 3 ml of ethanol. Allow the Substrate keep on bench for few minutes. Make sure the Substrate is dissolved completely and mixed thoroughly before use.
- **Coenzyme:** Reconstitute the Substrate with **1 ml** of **Reaction Buffer**. Allow the Coenzyme keep on bench for few minutes. Make sure the Substrate is dissolved completely and mixed thoroughly before use.

ASSAY PROCEDURE

Standards and samples should be assayed in at least duplicates.

- 1. <u>Sample wells:</u> Add **20 µl Sample** into <u>Sample wells</u>.
- 2. <u>Standard wells:</u> Add **100 µl** of **Standard Buffer** into <u>Standard wells</u>.
- Add 40 μl of Reaction Buffer, 10 μl of Coenzyme, 30 μl of Substrate into Sample wells.
- 4. Mix well. Incubate at **37°C** for **30 min**.
- 5. Add **100 µl** of **Stop Solution** into <u>each wells</u>.
- 6. Mix well. Read the OD at **405 nm**.

Reagent	Sample	Standard	Blank		
Sample	20 µl	-	-		
Standard	-	100 µl	-		
Distilled water	-	-	100 μl		
Reaction Buffer	40 µl	-	-		
Coenzyme	10 µl	-	-		
Substrate	30 µl	-	-		
Mix well. Incubate at 37°C for 30 min					
Stop Solution	100 µl	100 µl	100 µl		
Mix well. Read the OD at 405 nm .					

Summary of Mixed Function Oxidase Procedure

CALCULATION OF RESULTS

1. Unit Definition: One unit Mixed Function Oxidase activity is defined as the generates 1 μ mol of p-nitrophenol per minute in the reaction system.

2. Calculate the average absorbance values for each set of samples and control.

- 3. Calculation:
 - A. Definition:

C_{Protein}: the protein concentration, mg/ml;

C_{Standard}: the concentration of Standard, 0.3 µmol/ml;

 V_{Sample} : the volume of reaction sample, 20 µl = 0.02 ml;

V_{Standard}: the volume of reaction Standard, 100 μ l = 0.1 ml;

W: the weight of sample, g;

N: the quantity of cell or bacteria, $N \times 10^4$;

T: the reaction time, 30 minutes.

B. Formula:

a). According to the protein concentration of sample

Mixed Function Oxidase activity (U/mg) =

(ODSample- ODBlank) X (CStandard X VStandard) / [(ODStandard - ODBlank) X (CProtein X

V_{Sample}) X T]

= 0.05 X (OD_{Sample} – OD_{Blank}) / [(OD_{Standard} – OD_{Blank}) X C_{Protein}]

b). According to the weight of sample

Mixed Function Oxidase activity (U/g) =

(OD_{Sample} - OD_{Blank}) X (C_{Standard} X V_{Standard}) / [(OD_{Standard} - OD_{Blank}) X (V_{Sample} X

W) X T]

= 0.05 X (OD_{Sample} – OD_{Blank}) / [(OD_{Standard} – OD_{Blank}) X W]

c). According to the cell or bacteria

Mixed Function Oxidase activity $(U/10^4) =$

(OD_{Sample} - OD_{Blank}) X (C_{Standard} X V_{Standard}) / [(OD_{Standard} - OD_{Blank}) X (V_{Sample} X

N) X T]

= 0.05 X (OD_{Sample} – OD_{Blank}) / (OD_{Standard} – OD_{Blank}) / N