

Orexin A ELISA Kit

Enzyme Immunoassay for the quantification of Orexin A in serum and plasma samples

Catalog number: ARG81308

For research use only. Not for use in diagnostic procedures.

TABLE OF CONTENTS

SECTION	Page
INTRODUCTION	3
PRINCIPLE OF THE ASSAY	3
MATERIALS PROVIDED & STORAGE INFORMATION	4
MATERIALS REQUIRED BUT NOT PROVIDED	5
TECHNICAL HINTS AND PRECAUTIONS	5
SAMPLE COLLECTION & STORAGE INFORMATION	6
REAGENT PREPARATION	7
ASSAY PROCEDURE	8
CALCULATION OF RESULTS	11
EXAMPLE OF TYPICAL STANDARD CURVE	11
OUALITY ASSURANCE	12

MANUFACTURED BY:

Arigo Biolaboratories Corporation

Address: No. 22, Ln. 227, Gongyuan Rd., Hsinchu City 300, Taiwan

Phone: +886 (3) 562 1738

Fax: +886 (3) 561 3008

Email: info@arigobio.com

INTRODUCTION

This gene encodes a hypothalamic neuropeptide precursor protein that gives rise to two mature neuropeptides, orexin A and orexin B, by proteolytic processing. Orexin A and orexin B, which bind to orphan G-protein coupled receptors HCRTR1 and HCRTR2, function in the regulation of sleep and arousal. This neuropeptide arrangement may also play a role in feeding behavior, metabolism, and homeostasis. [provided by RefSeq, Jan 2010]

Neuropeptides that play a significant role in the regulation of food intake and sleep-wakefulness, possibly by coordinating the complex behavioral and physiologic responses of these complementary homeostatic functions. A broader role in the homeostatic regulation of energy metabolism, autonomic function, hormonal balance and the regulation of body fluids, is also suggested. Orexin-A binds to both OX1R and OX2R with a high affinity, whereas orexin-B binds only to OX2R with a similar high affinity. [UniProt]

PRINCIPLE OF THE ASSAY

This is an Enzyme Immunoassay for the quantification Orexin A in Human, mouse, Rat and Bovine, serum and EDTA-plasma samples. (This kit is designed for serum and plasma samples but it may be used for other samples when the expression level is fall within the linear range.) This assay employs the competitive quantitative enzyme immunoassay technique. A secondary antibody has been pre-coated onto a microtiter plate. The secondary antibody can bind to the Fc fragment of the primary antibody which recognizes Orexin A. The primary antibodies in the kit will be competitively bound by biotinylated-Orexin A peptides and Orexin A peptides in standards or targeted Orexin A peptides in samples. The wells are washed and then incubated with

Orexin A ELISA Kit ARG81308

Streptavidin-HRP reagent. The biotinylated peptide interacts with streptavidin-horseradish peroxidase to form a complex. After washing away any unbound Streptavidin-HRP reagent, a substrate solution (TMB) is added to the wells and color develops in inverse-proportion to the amount of Orexin A peptide present in the samples. The color development is stopped by the addition of STOP solution and the intensity of the color is measured at a wavelength of 450nm±2 nm. The concentration of Orexin A peptide in the sample is then determined by comparing the O.D of samples to the standard curve.

MATERIALS PROVIDED & STORAGE INFORMATION

Store the unopened kit at 2-8 °C. Use the kit before expiration date.

Component	Quantity	Storage information
Secondary antibody coated microplate	12 x 8 wells	4°C
20X Wash Buffer	50 ml	4°C
Primary antibody	1 vial	4°C
Biotinylated peptide	1 vial	4°C
Standard	1 vial	4°C
Diluent Buffer	23 ml	4°C
1000X Streptavidin-HRP conjugate	30 μΙ	4°C
TMB substrate	12 ml (Ready-to-use)	4°C (Protect from light)
STOP solution (2N HCl)	15 ml (Ready-to-use)	4°C
Positive Controls (Accept. Range dependent on lot#)	2 vials	4°C
Plate sealer	3 pieces	Room Temperature

MATERIALS REQUIRED BUT NOT PROVIDED

- Microplate reader capable of measuring absorbance at 450nm
- Pipettes and pipette tips
- Deionized or distilled water
- Microplate shaker (300-400rpm)
- Automated microplate washer (optional)

TECHNICAL HINTS AND PRECAUTIONS

- Wear protective gloves, clothing, eye, and face protection especially while handling blood or body fluid samples.
- Store the kit at 4°C at all times.
- Before opening any Eppendorf tubes for reconstitution, briefly centrifuge at ~3,000rpm for 5 seconds to ensure that all the lyophilized material is at the bottom of the tube.
- If crystals are observed in the 20X Wash buffer, warm to RT or 37°C until the crystals are completely dissolved.
- Ensure complete reconstitution and dilution of reagents prior to use.
- It is highly recommended that all solutions be used as soon as possible after reconstitution.
- Unused microplate strips should be placed back in the foil pouch with a desiccant and stored at 4°C. Do not allow moisture to enter the wells.
- All reagents should be mixed by gentle inversion or swirling prior to use.
 Do not induce foaming.
- Before using the kit, spin tubes and bring down all components to the bottom of tubes.
- Each time a new tip is used, make sure the tip is secure and free of air

bubbles. For better intra-assay variation, aspirate and expel a reagent or sample back into the container a few times prior to loading.

- Avoid submerging the whole tip into reagents because droplets can accumulate at the end of the tip causing an excess of reagent to be loaded into the well. This can lead to poor results.
- For optimal results, an orbital plate shaker capable of 300-400 rpm is recommended for all incubations.
- It is highly recommended that the standards, samples and controls be assayed in duplicates.

SAMPLE COLLECTION & STORAGE INFORMATION

The sample collection and storage conditions listed below are intended as general guidelines. Sample stability has not been evaluated. This kit is designed for serum and plasma samples but it may be used for other samples when the expression level is fall within the linear range.

<u>Serum</u>- Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at $1600 \times g$ at 4° C. Collect serum and assay immediately or aliquot and store samples at \leq -80 °C up to 1 month. Avoid repeated freeze-thaw cycles.

<u>Plasma</u> - Collect plasma using EDTA as an anticoagulant. Centrifuge for 15 minutes at 4° C at $1000 \times g$ within 30 minutes of collection. Assay immediately or aliquot and store samples at \leq -80 °C up to 1 month. Avoid repeated freezethaw cycles.

Note: We recommended add Aprotinin (enzyme inhibitor) for **ALL** sample collection to prevent sample degradation. 0.6 TIU or 100 μ l of Aprotinin per mL of sample solution.

REAGENT PREPARATION

- 1X Wash Buffer: Dilute 20X Wash Buffer into distilled water to yield 1X Wash buffer. Store the diluted 1X Wash Buffer at 4°C. If crystals appear in 20X Wash Buffer, warm the buffer in warm water bath (not higher than 50°C) for 30 minutes or until crystals disappear. Mix well before use.
- Primary antibody: Reconstitute the Primary antibody vial with 5 ml of 1X Wash Buffer. Allow it to sit for 5 minutes to completely dissolve, mix well and keep rehydrated solution at 4°C before use. Store the reconstituted antibody at 4°C up to a week. For long-term storage, aliquot & store at -20°C for up to 3 months. Avoid repeated freeze-thaw cycles. It is recommended that antibody should only be frozen-thawed once.
- Biotinylated peptide: Reconstitute the Biotinylated peptide vial with 5 ml of 1X Wash Buffer. Allow it to sit for 5 minutes to completely dissolve, mix well and keep rehydrated solution at 4°C before use. Store the reconstituted peptide at 4°C up to a week. For long-term storage, aliquot & store at -20°C for up to 3 months. Avoid repeated freeze-thaw cycles. It is recommended that peptide should only be frozen-thawed once.
- Positive control: Centrifuge and reconstitute the Positive control vial with 200 μl of 1X Wash Buffer. Allow it to sit for 5 minutes to completely dissolve, mix well and keep rehydrated solution at 4°C before use. Store the reconstituted control at 4°C up to a week. For long-term storage, aliquot & store at -20°C for up to 3 months. Avoid repeated freeze-thaw cycles. It is recommended that control should only be frozen-thawed once. (acceptable range dependent on lot#)

- 1X Streptavidin-HRP conjugate: 1X Streptavidin-HRP conjugate working solution should be prepared freshly before use. Centrifuge 1000X Streptavidin-HRP conjugate briefly and add 12µl of Streptavidin-HRP to 12ml 1X wash buffer to make a 1X Streptavidin-HRP working solution. Vortex thoroughly.
- Standard peptide: Centrifuge and reconstitute the standard with 1 ml of 1X Wash buffer and vortex. The concentration of this stock solution is 1000 ng/ml. Allow the solution to sit for at least 10 minutes at room temperature to completely dissolve. Store the reconstituted standard at 4°C up to a week. For long-term storage, aliquot & store at -20°C for up to 3 months. Avoid repeated freeze-thaw cycles. It is recommended that standard should only be frozen-thawed once. Dilute peptide standard solutions with Diluent Buffer to 100 ng/ml, 10 ng/ml, 1 ng/ml, 0.1 ng/ml, 0.01 ng/ml as follows:

The example of the dilution of standards

Standard No.	Standard Conc. (ng/ml)	Diluent Buffer (µl)	Standard (µl)
Stock	1000	-	-
S1	100	450	50 μl of Stock
S2	10	450	50 μl of S1
S3	1	450	50 μl of S2
S4	0.1	450	50 μl of S3
S5	0.01	450	50 μl of S4
SO (Total binding)	0	450	0

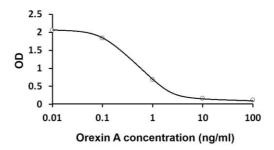
• Sample: Dilute plasma sample to 1:1 with diluent buffer. Vortex and centrifuge before use.

Note: It is highly recommended that normal plasma samples be used in comparison with patient plasma samples to establish a baseline value. If further dilutions are required, dilute plasma samples in Diluent Buffer.

ASSAY PROCEDURE

All materials should be equilibrated to room temperature (RT, 20-23°C) 30 minutes before use. Standards, samples and blank should be assayed in duplicates.

- 1. Remove excess microtiter strips from the plate frame, return them to the foil pouch containing the desiccant pack, and reseal it.
- 2. Add $50 \,\mu l$ of 1X Wash Buffer as Total Binding (S0, zero standard). Two empty wells should be left as blank.
- 3. Add $50 \,\mu l$ of prediluted peptide standards (add from S5 to S1), $50 \,\mu l$ positive controls or $50 \,\mu l$ samples into corresponding wells. It is advisable to assay each condition in duplicates.
- 4. Add 25 μl of primary antibody into each well except the Blank wells.
- 5. Add $25 \,\mu l$ of Biotinylated peptide into each well except the Blank wells. It is not recommended to use a multi-channel pipette to load the primary antibody and biotinylated peptide.
- 6. Seal the microtiter plate with plate sealer. Incubate for 2 hours at RT (20-23°C). Orbital shaking at 300-400 rpm is recommended.
- 7. Prepare 1X Streptavidin-HRP conjugate working solution: Mix and centrifuge Streptavidin-HRP concentrate vial (3,000-5,000 rpm for 5 seconds) before use. Pipette 12 µl of Streptavidin-HRP concentrate into 12


- ml of 1X Wash Buffer to make a Streptavidin-HRP working solution. Vortex thoroughly. Prepare freshly.
- 8. Remove sealer from plate.
- 9. Aspirate each well and wash, repeating the process 3 times for a total 4 washes. Wash by filling each well with 1× Wash Buffer (350 μl) using a squirt bottle, manifold dispenser, or autowasher. Complete removal of liquid at each is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating, decanting or blotting against clean paper towels.
- 10. Add 100 µl of diluted (1X) Streptavidin-HRP working solution into each well.
- 11. Reseal the plate with sealer. Incubate for **1 hour at RT.** Orbital shaking at 300-400 rpm is recommended.
- 12. Remove sealer from plate. Wash as according to step 9.
- 13. Add $100 \mu l$ of TMB substrate solution into each well.
- 14. Reseal the plate with sealer. Incubate for **1 hour at RT in dark** Orbital shaking at 300-400 rpm is recommended.
- 15. Remove sealer from plate. (DO NOT wash or discard the contents of the wells)
- 16. Add 100 μ l of STOP solution (2N HCl) into each wells to stop the reaction. Gently tap the plate to ensure thorough mixing. The color of the solution should change from blue to yellow.
- 17. Read the OD with a microplate reader at 450 nm immediately. It is recommended that the wells be read within 20 minutes after adding the Stop Solution.

CALCULATION OF RESULTS

- 1. Calculate the average absorbance values for each set of standards, controls and patient samples.
- 2. Using log-log, semi-log or linear graph paper, construct a standard curve by plotting the mean absorbance obtained from each standard against its concentration with absorbance value on the vertical (Y) axis and concentration on the horizontal (X) axis.
- 3. Using the mean absorbance value for each sample determine the corresponding concentration from the standard curve.
- 4. Automated method: The results in the IFU have been calculated automatically using a 4 PL (4 Parameter Logistics) curve fit. 4 Parameter Logistics is the preferred method. Other data reduction functions may give slightly different results.
- 5. If samples have been diluted prior to the assay, the measured concentration must be multiplied by their respective dilution factors.

EXAMPLE OF TYPICAL STANDARD CURVE

The following data is for demonstration only and cannot be used in place of data generations at the time of assay.

QUALITY ASSURANCE

Sensitivity

The standard of Orexin A peptide ranged from 0-100 ng/ml.

The mean MDD was 0.18 ng/ml.

Linear Range

0.18 - 5.6 ng/ml

Precision:

Intra-assay: < 10%

Inter-assay: < 15%

Cross Reactivity

The cross reactivity ratio of the tested peptide as the table:

Peptide	Cross Reactivity (%)	
Orexin A (Human, Bovine, Mouse, Rat)	100	
Orexin A (16-33)		
Orexin A (16-33)	0	
Orexin B (Human)	0	
Agouti-Related Protein (83-132)-Amide (Human)	0	
Neuropeptide (Human, Rat)	0	
α-MSH	0	
Leptin (Human)	0	

100